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ABSTRACT: The exponential growth in solar radiation measuring stations across the conterminous United States permits
the generation of gridded solar irradiance data that capture the spatiotemporal variability of solar irradiance far more
accurately than was previously possible from ground-based observations. Taking advantage of these observations, we gen-
erated a 30-yr climatology (1991–2020) of mean monthly global irradiance at a resolution of 30 arc s (∼800 m) on both a
horizontal surface and a sloped ground surface. This paper describes the methods used to generate the gridded data, which
include extensive quality control of station data, spatial interpolation of effective cloud transmittance using the “PRISM”

method, and simulation of the effects of elevation, shading, and reflection from nearby terrain on solar irradiance. A com-
parison of the new dataset with several other solar radiation products reveals some spatial features in solar radiation that
are either lacking or underresolved in some or all of the other datasets. Examples of these features include strong gradients
near foggy coastlines and along mountain ranges where there is persistent orographically driven cloud formation. The
workflow developed to create the long-term means will be used as a template for generating time series of monthly and
daily solar radiation grids up to the present.
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1. Introduction

Solar radiation is a major component of the radiation budget
at Earth’s surface and drives many hydrological, biological,
and chemical processes. As such, downwelling surface short-
wave radiation (surface solar irradiance) is a key input variable
used in models of land surface processes. These land surface
models (a term we use in a general sense to include models of,
e.g., hydrological processes, snow and ice dynamics, vegetation
dynamics, and carbon and nutrient fluxes) often use gridded
spatial meteorological data as inputs.

Reanalysis delivers gridded datasets of meteorological varia-
bles, including global (direct 1 diffuse) horizontal irradiance
(GHI), derived from retrospective runs with weather forecast
models that assimilate historical data of various types (Dee et al.
2013). Being both long-duration (multidecadal) and high fre-
quency (typically 1 or 3 h), reanalysis provides a basis for clima-
tological studies where observations are not available or are of

short duration. Refinements in reanalysis such as the Modern-
Era Retrospective Analysis for Research and Applications, ver-
sion 2 (MERRA-2; Gelaro et al. 2017), and the fifth major
global reanalysis produced by ECMWF (ERA5; Hersbach
et al. 2020) include improved representation of radiative fluxes
through the assimilation of satellite-derived aerosol concentra-
tions and cloud cover. The spatial resolution has also increased;
for example, ERA5 is on a 0.58 3 0.58 horizontal grid and the
land component of ERA5 (ERA5-Land) driven by downscaled
meteorological forcing from ERA5 is on a 0.183 0.18 horizontal
grid (Muñoz-Sabater et al. 2021). These reanalyses, however,
do not assimilate ground-based solar irradiance measurements.

In contrast, WorldClim 2 (Fick and Hijmans 2017; herein sim-
ply referred to as WorldClim) provides gridded, high-resolution
(30 arc s 3 30 arc s, or ∼1 km) GHI over land derived from
interpolated ground-based measurements using longitude,
latitude, elevation, and satellite-derived cloud cover as covari-
ates. Covering the globe, the intent of WorldClim is not neces-
sarily to maximize information over the United States. Also,
the GHI grids are limited to climatological monthly averages
representing the period 1970–2000, so do not take advantage
of the proliferation of stations measuring solar radiation in the
United States during the last two decades (see Fig. 1).

A literature review of other gridded GHI datasets of relatively
high spatial resolution (#1=48) over the conterminous United
States (CONUS) reveals that ground-based GHI observations
are seldom incorporated into their development, and when they
are, it is typically through using a relatively small number of sta-
tions to help to reduce biases in the gridded product. Moreover,
the underlying GHI information can be traced to a few sources
for most datasets. Several gridded datasets rely on the North
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American Regional Reanalysis (NARR; Mesinger et al. 2006),
which provides simulated GHI at 3-hourly and 32-km resolution.
NARR assimilates multiple types of data but not ground-based
GHI. The North American Land Data Assimilation System
(NLDAS; Cosgrove et al. 2003; Xia et al. 2012) regrids NARR
GHI to 1=88 and disaggregates to an hourly time step while us-
ing the Geostationary Operational Environmental Satellite-8
(GOES-8) to reduce the CONUS-wide mean monthly bias.
GridMET (Abatzoglou 2013) aggregates hourly GHI from
NLDAS (whose source is NARR) to a daily time step and bili-
nearly interpolates to 1/248. Holden et al. (2018) generate daily
GHI by simulating clear-sky irradiance at 8 arc s that is then
adjusted for cloud cover, where the cloud cover adjustment is
derived from NLDAS (again, whose source is NARR). Holden
et al. (2018) bias correct NLDAS solar irradiance data using
stations from the National Solar Radiation Database
(NSRDB; Wilcox 2012) and the U.S. Climate Reference Net-
work (USCRN; Diamond et al. 2013).

Other gridded datasets rely on the Mountain Microclimate
Simulation Model (MTCLIM; Thornton and Running 1999;
Bohn et al. 2013) to estimate daily irradiance indirectly as a
function of the daily maximum and minimum temperature
and daily precipitation. Daymet (Thornton et al. 1997, 2021)
provides daily global irradiance at 1 km3 1 km resolution using
MTCLIM wherein the temperature and precipitation observa-
tions from the Global Historical Climatology Network (GHCN;
Menne et al. 2012) are spatially interpolated (Thornton et al.
1997, 2000). Livneh et al. (2013) calculate GHI using MTCLIM
at 1/168 wherein temperature and daily precipitation observa-
tions from NOAA Cooperative Observer (COOP) stations are
spatially interpolated. The Multiscale Synthesis and Terrestrial
Model Intercomparison Project (MsTMIP; Huntzinger et al.
2013) uses both MTCLIM and NARR: Daily GHI is calculated
at 1=48 using MTCLIM with temperature and precipitation taken
from NARR after correcting precipitation biases (Wei et al.
2014).

Yet other gridded datasets are based on models used in
NSRDB, including the “SUNY” model incorporating geo-
stationary satellite data (Perez et al. 2002). SolarAnywhere
provides GHI at a spatial and temporal resolution as fine as
0.018 and 1 min, respectively, based on Perez et al. (2002)
with modifications summarized on the SolarAnywhere website.

Not all the above datasets are freely or readily available for
researchers. The higher-resolution SolarAnywhere products
must be purchased and have restrictive licensing agreements,
and other datasets were created for a specific research project
and are not publicly available for download (Holden et al.
2018).

The above datasets contain errors that may be significant
depending on the application. For example, Slater (2016)
found that datasets derived from NLDAS and MTCLIM
(Daymet; MsTMIP) had mean summer GHI errors exceeding
610% of the observed mean and the errors varied strongly
across CONUS (spatial correlations , 0.7 between observed
and modeled values of the ratio of actual to clear-sky GHI at
the surface). Slater (2016) also noted particularly large posi-
tive biases in NARR over all CONUS. GOES products can
have strong east–west variability in bias over CONUS (Slater
2016) and both Jepsen et al. (2012) and Slater et al. (2013)
found periods of erratic values and large systematic biases in
parts of the western United States.

Although having an observation-based dataset as an alter-
native or addition to the above datasets is desirable, numer-
ous challenges exist in using solar irradiance observations to
make a quality, gridded, and up-to-date CONUS-wide prod-
uct, which may explain why none exist, particularly given the
availability of reanalysis products that are of both finer resolu-
tion and higher quality with each generation. One challenge is
that no single solar radiation network has sufficient spatial and
temporal coverage over CONUS for reliable high-resolution
mapping (Kafka and Miller 2019). Achieving dense coverage
requires acquiring data from many networks with different
protocols of data curation and standardizing the data. How-
ever, such pooling and standardization of data has been
accomplished for various meteorological variables (Daly et al.
2008) including solar radiation (Slater 2016). A second chal-
lenge is filling the spatial gaps between solar radiation meas-
urements in a way that is computationally feasible but still
emulates the physical processes that drive spatial variability in
solar irradiance. While a variety of interpolation methods exist
and many are readily available as packages for commonly
used software (e.g., Kafka and Miller 2019), we might expect
that greater accuracy can be achieved when the influence of
elevation, coastal proximity, vertical atmospheric layer (bound-
ary layer and free atmosphere), and topographic position, for ex-
ample, are considered, such as has been done for variables like
temperature, precipitation, dewpoint, and vapor pressure deficit
(Daly et al. 1994, 2008, 2015) and, to some extent, for solar radia-
tion (Fick and Hijmans 2017).

The challenge of coping with radiometer measurement error
may be the primary reason no observation-based gridded data-
sets have been developed using the large number of records
currently available. Research-grade observations provide the
highest accuracy but are relatively rare, especially those of
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FIG. 1. Number of stations with GHI measurements in CONUS
acquired for this study: all stations with GHI data ingested into the
database (slate blue plus orange plus gray shading); stations with
accepted daily GHI after the first QC stage, which culls outliers or
days with incomplete subhourly data (slate blue plus orange shad-
ing); stations with accepted daily GHI after adjustment and second
QC stage (slate blue shading).
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long duration (Gueymard and Myers 2009), and most solar
radiation networks use one of a few pyranometers on the mar-
ket. Accuracy varies among types and models of radiometers,
with different instruments having different sensitivities in accu-
racy to changes in solar and atmospheric radiation, spectral
radiation distribution, incidence angle of the incoming radi-
ation (e.g., pyranometer cosine response), thermal offset [a dif-
ference in temperature between detector and dome(s)] and
temperature (Habte et al. 2016). The factory calibration errors
of 65% for GHI reported for most pyranometers are gener-
ally supported by independent evaluations (Cronin and
McPhaden 1997; Stoffel et al. 2000; Gueymard and Myers
2009; Habte et al. 2015) but errors vary with environmental
conditions. For example, Gueymard and Myers (2009) found
errors of only 62% averaged over a year, yet mean monthly
errors were as large as 28% in winter. Habte et al. (2015)
found errors of65% at zenith angles, 608 but error increased
considerably for some instruments (up to 17%) at large zenith
angles (708–808).

The measurement errors given above are for carefully main-
tained instruments, while in practice instruments can degrade for
years before being cleaned, recalibrated, repaired or replaced
(e.g., Slater 2016) such that systematic error is nonstationary and
often exceeds factory specifications. It is a major undertaking to
identify nonstationary error in thousands of instruments to filter
out bad data and adjust biases in salvageable measurements in
order to homogenize observations prior to interpolating to a
grid.

The lack of a high-resolution gridded observation-based solar
irradiance dataset remains a data gap for evaluating climate
models and reanalysis, for driving land surface models, and for
general understanding of spatiotemporal variability in solar ra-
diation across CONUS. In response, this paper presents a
method for generating a gridded dataset of global irradiance
over CONUS using primarily ground-based solar radiation
measurements, combined with cloud-cover observations and
modeling of clear-sky irradiance. The mapping borrows from
techniques in Daly et al. (1994, 2008, 2015, 2021) with modifica-
tions particular to solar radiation data. This paper also describes
our first product: a 30-yr climatology (1991–2020) of daily global
irradiance averaged by calendar month at a resolution of
30 arc s (∼800 m). We compare this new “PRISM” climatolog-
ical dataset with other datasets that are based on ground-based
observations (WorldClim), ground-based observations of
covarying environmental variables (Daymet), and reanalysis
(ERA5-Land, MERRA-2, and NLDAS). Our comparisons
are largely qualitative and meant to highlight unique fea-
tures in the PRISM dataset, leaving a more comprehensive
and quantitative evaluation of solar irradiance datasets
(Slater 2016) for further study.

2. Data

a. Station data

Observations of GHI were acquired from station networks
that had data at any time during the years 1961 through 2020
(see Table S1 in the online supplemental material). These

data came in time steps ranging from 5 min to hourly. Sub-
hourly data were first averaged to hourly. For consistency with
other PRISM datasets (Daly et al. 2008, 2015), hourly data
were then aggregated to create daily values (MJ m22 day21)
corresponding to 1200:00–1159:59 coordinated universal time
(UTC). Effective daily cloud transmittance Tc was calculated as
daily GHI (Ssurf) divided by daily clear-sky GHI (Sclear_sky) after
applying quality control criteria and an algorithm to reduce
measurement error in Ssurf [see section 3a(1)]. For each day
of the year, we used a climatological average for Sclear_sky
[see section 3b(1)], which meant that variability in Tc was
not only due to cloud cover variability but also partly to
anomalies in water vapor and aerosol concentrations. Still,
we refer to Tc as “cloud transmittance” for brevity.

Although not used for making the gridded solar radiation
datasets, daily GHI data from the National Renewable Energy
Laboratory (NREL) database were acquired for 16 locations
(Table 1, along with Table S2 in the online supplemental
material). These station data were used to examine the accu-
racy of the gridded solar radiation data, assuming the NREL
instrumentation were among the more carefully maintained
and calibrated across networks (Gueymard 2012).

We also obtained modeled hourly solar radiation at over
1300 locations in CONUS from the National Solar Radiation
Database 1961–90 (Maxwell et al. 1995) and 1991–2005 (Wilcox
2007). NSRDB estimates GHI from other environmental vari-
ables using models that are both empirically and physically
based. Where GHI was available from more than one model,
we used the value with the lowest assigned error estimate. We
treated NSRDB modeled station data the same as we treated
observed data, though additional adjustments were made to ac-
count for detected regional biases [see section 3b(2)]. NSRDB
modeled data were not used where irradiance observations
from a collocated station were available for estimating the cli-
matology [see section 3a(3)].

We additionally estimated station global irradiance from
cloud height and sky coverage measured by ceilometers avail-
able from Aviation Routine Weather Report (METAR)
records taken at airports using the National Weather Service’s
automated observation systems, which include the Automated
Surface Observation System (ASOS), Automated Weather
Observation System (AWOS), and Automated Meteorological
Observation Systems. (For brevity, we use “ASOS” to in-
clude all airports generating METAR records, regardless of
the particular system.) It is worth noting that ceilometers
measure cloud properties directly overhead via a narrow
beam of light, so do not scan the entire sky. We used ASOS
data beginning 1 January 1996 because by that time most
U.S. airports had transitioned from visual observation to au-
tomated systems; the method we used for estimating Tc was
calibrated to these automated observations (Belcher and
DeGaetano 2007). Hourly and subhourly values of Tc were
calculated using METAR cloud base height and coverage
following Belcher and DeGaetano (2007), though we ex-
tended their method to accommodate cloud bases .3659 m
(see section S1 in the online supplemental material). Daily
Tc was calculated as a weighted average of the subdaily val-
ues of cloud transmittance as
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Tc 5
∑N
i51

Tc,i cosZi

/∑N
i51

cosZi, (1)

where i is the ith of N observations in a day (using same defini-
tion of a “day” as above), and Z is the solar zenith angle. Detec-
tion of regionally systematic biases in ASOS Tc prompted an
additional adjustment to reduce biases [see section 3b(2)]. Last,
Ssurf was calculated by multiplying Tc by a modeled Sclear_sky:

Ssurf 5 TcSclear_sky: (2)

Section 3b(1) describes the modeling of Sclear_sky.

b. MERRA-2 reanalysis

MERRA-2 surface elevation and hourly surface shortwave
flux data at 0.6258 longitude by 0.58 latitude resolution were
used to estimate clear-sky atmospheric extinction parameters
for modeling clear-sky GHI climatology at higher (30 arc s)
horizontal resolution over CONUS [see section 3b(1)]. Hourly
values of surface albedo as, top-of-atmosphere incoming short-
wave flux Stoa, Sclear_sky, and Ssurf were averaged to daily values
(1200–1200 UTC). Effective daily clear-sky transmittance
Tclear_sky was calculated as Sclear_sky/Stoa using the daily values
for each variable.

c. Other gridded solar radiation data

Gridded global irradiance data from ERA5, NLDAS (spe-
cifically, the NLDAS-2 forcing data), WorldClim, and Daymet
were acquired for comparison with our product. Thirty-year
climatologies of monthly values were computed from ERA5
(1991–2020), NLDAS (1991–2020), and Daymet (1990–2019;

2020 was not available at the time of this analysis). WorldClim
was only available as the climatology of monthly values for the
period 1970–2000.

3. Methods

The generation of the mean monthly gridded global irradi-
ance datasets required multiple steps, including station data
quality control, bias reduction, spatial interpolation, and solar
radiation modeling. This section describes these steps, which
are summarized in a workflow diagram in Fig. 2. In the interest
of length, some details have been made available in the online
supplemental materials, which also includes a more detailed
workflow diagram (Figs. S1 and S2 in the online supplemental
material).

a. Station data quality control and bias reduction

1) SOLAR RADIATION OBSERVATIONS

Previous studies have used various quality-control (QC)
methods for ground-based solar radiation measurements
(e.g., Younes et al. 2005; Shi et al. 2008; Journée and Bertrand
2011; Longman et al. 2013; Slater 2016). As Slater (2016)
points out, however, many methods are for hourly data,
require both the direct and diffuse components of radiation,
use a lengthy (many years) time series to identify outliers, or
are limited to identifying erroneous data. Like some studies
(e.g., Longman et al. 2013; Slater 2016), we wanted to not only
identify erroneous data but also “salvage” data that appeared
to be erroneous in an absolute sense but may be acceptable in
a relative sense and therefore amenable to relatively simple
bias correction.

TABLE 1. NREL solar radiation measuring stations with at least 5 years of valid observations per calendar month. Here and in
Table 3, below, ID indicates identifier.

Station ID Station name Lon (8E) Lat (8N) Elev (m)

BMS NREL Solar Radiation Research Laboratory [Baseline Measurement
System (BMS)], CO

2105.179 39.742 1829

BS Bluefield State College, WV 281.240 37.265 803
EC Elizabeth City State University, NC 276.216 36.282 26
HSU California State Polytechnic University, Humboldt [Solar Radiation

Monitoring Station (SoRMS)], CA
2124.080 40.876 36

IRRSP NREL Solar Radiation Research Laboratory [Irradiance, Inc., rotating
shadowband pyranometer (RSP), version 2], CO

2105.179 39.742 1829

LMU SOLRMAP Loyola Marymount University [rotating shadowband
radiometer (RSR)], CA

2118.423 33.967 27

LRSS Lowry Range Solar Station (RSR), CO 2104.580 39.607 1860
NPC Nevada Power Clark Station, NV 2115.052 36.086 523
NWTC NREL Flatirons Campus (M2), CO 2105.235 39.911 1855
SMUDA Sacramento Municipal Utility District (Anatolia), CA 2121.240 38.546 51
SPMD South Park Mountain Data, CO 2105.625 39.273 2944
STAC Solar Technology Acceleration Center (SolarTAC), CO 2104.620 39.757 1674
UAT SOLRMAP University of Arizona [Observed Atmospheric and Solar

Information System (OASIS)], AZ
2110.955 32.230 786

UNLV University of Nevada, Las Vegas, NV 2115.143 36.107 615
UOSRML University of Oregon [Solar Radiation Monitoring Laboratory

(SRML)], OR
2123.074 44.047 133.8

VTIF NREL Vehicle Testing and Integration Facility RSR, CO 2105.176 39.742 1793
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Similar to others (e.g., Riihimatki et al. 2006; Slater 2016)
our bias-correction method rescales observations based on
relative difference between the off-calibration clear-sky val-
ues and assumed “true” clear-sky values. Following Slater
(2016), we defined a clear-sky ratio (CSR):

CSR 5
Eclear_sky

Sclear_sky
(3)

where Eclear_sky is an upper-bound envelope of a measured,
and possibly biased, daily value and Sclear_sky is the “true”
daily clear-sky GHI. The upper-bound envelope is estimated
from observations over a predetermined time interval
(183 or 91 days). For each station, Sclear_sky came from gridded
daily clear-sky climatological values simulated at a 30-arc-s reso-
lution [see section 3b(1)] with values from the nearest grid point
assigned to each station. After determining CSR, a rescaled, or
“bias corrected,” global radiation S*surf was calculated as

S*surf 5
Ssurf
CSR

(4)

for each measured Ssurf. The adjustment in Eq. (4) assumes
that clear- and cloudy-sky error can be equally rescaled.

The key to successfully applying Eqs. (3) and (4) is defining
Eclear_sky. We found that the algorithm in Slater (2016) for
defining Eclear_sky did not always produce desirable results, es-
pecially when the CSR was relatively far from 1. Though
Slater (2016) limited rescaling with values of CSR in the range
of 0.95–1.05, we wanted to salvage a larger proportion of data.
We also wanted an algorithm that struck a balance between
robustness and simplicity and did not require coding many
“special” cases. Our method applies Eq. (3) twice, once after

each pass through the daily time series with sliding windows of
183 then 91 days. Data that do not meet quality control criteria
are flagged and excluded from further analysis. See section S2
in the online supplemental material for a complete description
of the method.

There are too many different ways in which bad data can
present themselves in a time series to discuss here. We illus-
trate the results of our adjustment procedure on just two exam-
ples of common situations. In the first example, measurements
at a site in Tucson, Arizona (USCRN site 53131), degraded
over a period of a few years (2014–18) until observed values
systematically increased in the spring of 2018 due presumably
to maintenance of the instrumentation (Fig. 3a). The adjust-
ment procedure rescales all the observations so that the up-
per envelope of data approaches the expected clear-sky GHI
(Fig. 3b) but flags the first few months of 2018 as bad be-
cause the method does not identify the precise date of main-
tenance. In the second example, winter observations at a site in
Bend, Oregon [Pacific Northwest Cooperative Agricultural
Weather Network (AgriMet) site BEWO], never reached the
expected clear-sky values, and the negative bias progressively
worsened over a period of at least 15 years (Fig. 3c). A site visit
by the authors in October 2019 revealed trees as obstacles to di-
rect radiation even near midday, as well as shadow from nearby
buildings at low sun angles. Progressively degrading measure-
ments over many winters (when sun angle is low) is consistent
with an increase in shade resulting from upward-growing vege-
tation. Our rescaling does not fully compensate for this season-
ally varying bias and part of winter and spring are flagged as
bad every year beginning winter 2007–08. The data quality wor-
sens sufficiently over time such that entire years are flagged as
bad (Fig. 3d).

FIG. 2. Workflow diagram for creating the gridded global irradiance dataset. Orange boxes in-
dicate data sources, yellow boxes indicate station data processing, and blue boxes indicate
gridded data processing.

R U P P E T A L . 861JULY 2022

Brought to you by OREGON STATE UNIVERSITY | Unauthenticated | Downloaded 07/20/22 07:33 PM UTC



For all stations in all networks, our adjustment procedure
rejected 17% of the daily data that passed initial daily com-
pleteness and quality criteria. Of the daily data that were
accepted, 41% of values were adjusted by an amount less
than, or equal to,65%, while 23% of the values were adjusted
by more than610%.

2) ASOS CLOUD TRANSMITTANCE

Belcher and DeGaetano (2007) developed their algorithm
for estimating Tc from ASOS METAR when few ASOS ceil-
ometers detected clouds above 3840 m (and actually reported
cloud height no higher than 3659 m, or 12 000 ft). Their algo-
rithm had to compensate for this instrument limitation, which
caused days with clouds above 3659 m to be reported as clear.
Because many airports now have ceilometers that detect clouds
above 3840 m, we reevaluated Belcher and DeGaetano’s
(2007) algorithm using a larger number of records both in
terms of record length and number of stations, including sta-
tions that do not (“type I” stations), and do (“type II” stations),
regularly report clouds above 3659 m.

Like Belcher and DeGaetano (2007), we paired ASOS sta-
tions with proximal stations from other networks measuring
solar radiation. For brevity we refer to stations with solar

irradiance measurements as “solar” stations. Restricting the
sample to solar stations within 20 km of an ASOS station, re-
quiring concurrent records of at least 730 days, and applying
other criteria (section S3 in the online supplemental material),
resulted in 971 pairs with an average ASOS-solar station dis-
tance of 10.2 km and average of 3135 concurrent daily
observations.

Inspection of the station pairings revealed systematic biases
in ASOS Tc (see section S3 and Fig. S3 in the online
supplemental material). The systematic biases in ASOS Tc

motivated us to correct biases in ASOS Tc that were a func-
tion of ASOS Tc itself. These biases differed between stations
that do not (type I), and do (type II), report clouds above
3659 m, so we applied a different bias-correction function
depending on whether a station was classified as type I or II,
and, if it was type II, whether it was reporting clouds above
3659 m on the day in question (Fig. S4 in the online
supplemental material). No regional or seasonal variations in
the bias-correction functions were made at this stage.

A consequence of the bias correction was a tendency to
bring daily values toward the mean, so errors in low and high
daily values of Tc often increased. Because our goal was to
produce the best estimates of climatological monthly values,
however, this shortcoming was not severe. We recommend
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FIG. 3. Examples of (a) original daily observed GHI (Ssurf) with modeled clear-sky GHI (Sclear_sky)
and first pass at fitting envelope of observed clear-sky days (Eclear_sky) and (b) adjusted data
after second pass at USCRN station 53131 (Tucson, Arizona; 32.248N, 111.178W). (c),(d) As
in (a),(b), respectively, for AgriMet station BEWO (Bend, Oregon; 44.058N, 121.328W).
Data identified as unreliable are marked in red in (b) and (d).
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applying other methods for reducing bias when the intent is to
estimate daily time series of Tc.

3) STATION-BASED CLIMATOLOGY

The daily GHI values were averaged to create monthly
means for each year of record. A maximum of two invalid
(missing values were also considered invalid) daily values per
month were allowed for a monthly value to be considered
valid. Monthly mean clear-sky GHI was also calculated for
each valid month of solar radiation. The monthly mean GHI
was converted to Tc in preparation for mapping with PRISM
by dividing by the clear-sky GHI.

Monthly average Tc were tested for spatial consistency us-
ing the Assay QC system, a version of PRISM that estimates
station values in their absence and compares them with the
observed values (Daly et al. 2008). Monthly values failing the
Assay QC check (i.e., prediction differs from observation by
more than 10%) were set to missing. The remaining monthly
values were averaged over 1991–2020, if they had five or more
years of data during this period, otherwise they were averaged
over their historical period of record. A 1991–2020 monthly
climatology estimated using data from at least 23 of the
30 years (75% data coverage) was considered sufficiently rep-
resentative of the 1991–2020 period and was termed a “long
term” station. However, monthly climatologies calculated
from fewer than 23 years in 1991–2020, or calculated from
data outside this period, were still considered for inclusion in
order to increase station density. These were termed “short
term” stations and were adjusted using nearby long-term

stations to reduce possible short-term deviations from the
1991–2020 mean (see section S4 in the online supplemental
material).

b. Mapping methods

1) CLEAR-SKY SOLAR RADIATION

Daily clear-sky GHI climatology was modeled using the
USDA Agricultural Research Service (ARS)–USGS, version
2.4.1, of the Image Processing Workbench (IPW; Frew 1990;
Marks et al. 2018). IPW uses a two-stream approximation to
the radiative transfer equation and simulates the effects of
elevation, shading, and reflection from nearby terrain on irra-
diance on a horizontal or inclined surface (Dubayah et al.
1990; Dubayah 1994). We used recommended values of time-
invariant atmospheric parameters in the model (Daly et al.
2007).

IPW requires a surface albedo as and clear-sky atmospheric
vertical optical depth tclear_sky at mean sea level as input. A daily
as climatology was derived directly from MERRA-2 as follows:
We smoothed the time series of daily as at each MERRA-2 grid
cell with a Gaussian filter (standard deviation5 7 days) and then
calculated a 30-yr (1991–2020) average of smoothed daily as for
each grid cell and each of 365 calendar days (29 February
excluded).

To estimate tclear_sky consistent with IPW parameterizations
but usingMERRA-2 data, we used an inverse-modeling approach
to map MERRA-2 Tclear_sky to IPW tclear_sky. First, we regridded
MERRA-2 data from its native resolution (0.6258 longitude by
0.58 latitude) to 0.58 3 0.58 because IPW expects longitude and

FIG. 4. Locations of stations with solar radiation data used to generate long-term (1991–2020)
mean monthly global irradiance. Red-outlined boxes show areas highlighted in text and later in
Fig. 8 (area “A”), Fig. 10 (“B”), Fig. 11 (“C”), and Fig. 12 (“D”).
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latitude resolution to be identical. For each MERRA-2 grid
cell and each day of one calendar year (2006), IPW was then
used to calculate Tclear_sky for 22 values of tclear_sky ranging
from 0.01 to 1.6. We fitted the following empirical equation
relating IPW Tclear_sky to tclear_sky:

lnTclear_sky 5 b1t
b2
clear_sky: (5)

Using nonlinear regression, the parameters b1 and b2 were
estimated for each one of 365 days and for each MERRA-2
grid cell (see examples in Fig. S5 in the online supplemental
material). To greatly reduce the total number of parameters,
both b1 and b2 were subsequently modeled as a function of
the day of year using an eighth-order polynomial equation
with parameters estimated using standard linear regression
(see examples in Fig. S6 in the online supplemental material).

A Tclear_sky climatology was generated by smoothing the
time series of daily MERRA-2 Tclear_sky at each grid cell with
a Gaussian filter (standard deviation 5 21 days) and then
averaging the smoothed Tclear_sky over 30 years (1991–2020)
for each grid cell and each of 365 calendar days (leap day ex-
cluded). Climatological daily tclear_sky for each grid cell was
calculated from the climatological daily MERRA-2 Tclear_sky

by inverting Eq. (5). Both climatological tclear_sky and as were
regridded to the 30-arc-s resolution grid using a Gaussian
filter.

Last, daily clear-sky GHI was simulated for one representa-
tive year (2006) using IPW with the 30-arc-s topography and
30-arc-s daily climatological values of tclear_sky and as. The
same clear-sky GHI values for the representative year were
used for all other years.

2) EFFECTIVE CLOUD TRANSMITTANCE AND GLOBAL

IRRADIANCE

Mean monthly Tc was interpolated to a regular grid at
30-arc-s resolution with the PRISM climate mapping system
(Daly et al. 1994, 2002, 2003, 2008). For each grid cell, PRISM
calculates a local regression function between a climate ele-
ment and an explanatory grid such as a digital elevation model
(DEM) or an existing climate grid. Nearby stations entering
the regression are assigned weights based primarily on the
physiographic similarity of the station to the grid cell. Physio-
graphic factors relevant to this study are distance, elevation,
coastal proximity, vertical atmospheric layer (boundary layer
and free atmosphere), and topographic position (relative to
surrounding terrain). We used a process called climatologically
aided interpolation (CAI; Willmott and Robeson 1995) to per-
form the interpolation. CAI is effective at mapping climate
variables for which there are relatively few stations, and for
which there is an existing grid (called the predictor grid) that
is spatially correlated on a local level with the interpolated ele-
ment (Daly et al. 2012, 2015).

We considered three candidate climatological predictor
grids for the interpolation of mean monthly Tc, all part of the
PRISM suite of gridded monthly climatologies: mean daily
temperature range (DTR), mean daily minimum relative
humidity (RHmin), and mean daily maximum vapor pressure

deficit (VPDmax). DTR has been shown to be correlated with
cloudiness; cloudy days tend to have depressed maximum tem-
perature due to the attenuation of direct solar radiation during
the daylight hours, and the presence of clouds in the morning
hours limits surface cooling through upwelling longwave radia-
tion, raising the minimum temperature (Thornton and Running
1999). RHmin has also been found to be associated with cloudi-
ness; days with high afternoon RH values tend to occur during
cloudy conditions, while those with low values are often cloud-
free (Cenzig et al. 1981). RHmin was estimated with 1991–2020
grids of mean monthly maximum daily temperature and
VPDmax, after Daly et al. (2015), their Eq. (6). VPDmax, as a
standalone measure of daytime moisture deficit, was also con-
sidered as a possible predictor grid.

Of the three potential predictor grids considered, RHmin was
found to be the most effective in the interpolation of Tc. DTR
exhibited excessive fine scale variation in differing topographic
positions (e.g., low DTR on ridgetops versus high DTR in
valley bottoms) under relatively constant solar transmit-
tance conditions, causing noise in the local relationships.
The relationship between VPDmax and Tc was found to vary
with temperature, resulting in cooler, high-elevation areas
appearing cloudier than warmer, low-elevation areas, under
relatively constant solar transmittance conditions. In con-
trast, RHmin varied in a relatively conservative fashion,
showing little variation with elevation or topographic posi-
tion under relatively constant solar transmittance condi-
tions. In addition, RHmin was effective at delineating strong
gradients in summertime transmittance caused by fog and

FIG. 5. Mean (a) January and (b) July effective cloud transmittance
Tc from PRISM.
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low stratus along the West Coast, and persistent winter fog
in inland valleys such as the California’s Central Valley and
Idaho’s Snake River Plain (see, e.g., maps of January and
July RHmin in Fig. S7 in the online supplemental material).

A preliminary inspection of mapped mean monthly Tc sug-
gested there were some regionally varying differences in Tc

between stations with measured solar radiation and stations
with modeled solar radiation, namely ASOS and NSRDB.
We confirmed this by making monthly grids of ASOS and
NSRDB biases in mean monthly Tc following the mapping
procedure described in section 3b(2) above but without using
RHmin as a predictor. We used bias estimates at those ASOS
and NSRDB stations that had solar stations within a 20-km
radius (see section S5 in the online supplemental material for
details). Separate bias maps were made for ASOS and
NSRDB (see, e.g., maps of January and July bias in Fig. S8 in

the online supplemental material). Mean monthly Tc values at
all ASOS and NSRDB stations were adjusted by subtracting
the mapped biases at the station locations from the original
station values.

Revised maps of mean monthly Tc were made that incorpo-
rated the bias-adjusted ASOS and NSRDB values. The maps
were visually inspected for patterns (e.g., bullseyes) that
appeared erroneous. Stations whose values differed greatly
from our expectations based on surrounding stations and our
knowledge of local climate geography were then flagged and
excluded from a final round of mapping. The majority of the
excluded stations were from the ASOS and NSRDB net-
works. Figure 4 shows the locations of the stations used in the
final mapping.

While ASOS and NSRDB stations were treated the same
as solar observation stations in the above mapping process, it

FIG. 6. Mean January GHI from (a) PRISM, (b) ERA5-Land, (c) WorldClim, (d) NLDAS, and (f) MERRA-2,
and mean January global irradiance on a sloped surface from (e) Daymet. The effect of slope in Daymet is not visu-
ally discernable at the resolution shown here. Spatial resolution for PRISM, WorldClim, and Daymet was regridded
to 0.18 3 0.18 to facilitate plotting. All other datasets are at their native resolution. Higher values of radiation in some
panels exceed the upper limit of the color scale.
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is worth noting that many ASOS and NSRDB stations are
actually the same station. Where records of two collocated
stations overlap in time, records for the two stations were not
merged into single time series. Instead, the collocated stations
were treated as distinct stations while calculating normals and
the mapping process effectively averaged the ASOS and
NSRDB values where they were collocated.

As the last step, we ran IPW again for each day in one cal-
endar year (2006) using the gridded climatological monthly Tc

from above as input. Model results consisted of daily global
irradiance on both horizontal and sloped ground surfaces,
where the slope and aspect of the surface are calculated at the
30-arc-s resolution. Daily values were aggregated to monthly
means as the final output.

4. Results and discussion

Our primary results are the PRISM 30-arc-s gridded data-
sets of 1991–2020 climatological monthly global irradiance on
horizontal and sloped ground surfaces. Using the PRISM

data, we briefly discuss the climatology of global irradiance
over CONUS and make comparisons of PRISM with some
commonly used gridded solar radiation datasets. We also pro-
vide four illustrative examples of where differences among
datasets are notable and where PRISM brings new informa-
tion: the central coast and southern Sierras of California, the
Rocky Mountains of Colorado, and the Appalachian Moun-
tains of North Carolina.

a. CONUS seasonal climatology

Once sun angle and elevation are accounted for, which to-
gether determine the thickness of the atmosphere normal to
the sun’s rays, the spatial pattern of global irradiance across
CONUS is largely driven by variability in cloud cover, whose
direct effect here is parameterized by the effective cloud
transmittance Tc. Aerosols and water vapor also play roles,
although in our method their impact is subsumed in the clear-
sky irradiance (see, e.g., maps for January and July clear-sky
GHI in Fig. S9 in the online supplemental material).

FIG. 7. As in Fig. 6, but for July.
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Patterns of climatological Tc from PRISM show strong sea-
sonal variations (Fig. 5). In winter, Tc is lowest in the Pacific
Northwest, especially across the Cascades and Northern Rocky
Mountains and in the upper Midwest, with local minima in
regions downwind of the Great Lakes and west of the Appala-
chians (See Fig. 5a for January). Local minima are also seen in
western valleys that experience persistent inversions, such as
the Central Valley of California. Large scale patterns of winter
Tc generally follow those of precipitation, with maxima in the
dry southwestern United States, decreasing as one moves into
the wetter eastern United States. In summer, climatological
drought is reflected in very high Tc in the western United
States (Fig. 5b), except for immediate coastal areas subject to
frequent marine layer intrusions (see section 4b below). Also

evident is increased cloudiness in mountain areas of the south-
western United States during the North American monsoon,
which is typically at its height in July and August. Tc is gener-
ally lower in the eastern United States, due to cloudiness asso-
ciated with frequent convective showers and thunderstorms.
Minima are seen in the southern Appalachians, which receive
substantial moisture from the Gulf of Mexico in summer.

As would be expected, global irradiance across CONUS ex-
hibits strong seasonal variations, reaching a minimum in win-
ter and a maximum in summer (Figs. 6 and 7 for January and
July, respectively). Spatial patterns of global irradiance also
vary seasonally. In winter, a strong north–south latitudinal
gradient, controlled by changes in sun angle and day length, is
modulated by patterns of Tc described earlier. Here we

FIG. 8. Mean July GHI from (a) PRISM and (b) WorldClim, and global irradiance on a sloped surface from
(c) PRISM and (d) Daymet, highlighting the effect of low clouds and fog along the coast of central California. The dark-
gray line shows the location of transect 1 used in Fig. 9a, below. The mapped region corresponds to area “A” in Fig. 4.
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compare global irradiance products from PRISM and World-
Clim, which incorporate surface observations directly; ERA5-
Land, NLDAS, and MERRA-2, which are derived from
modeling and remote sensing products; and Daymet, which
derives total atmospheric transmittance from daily tempera-
ture range and precipitation. In winter, all exhibit similar
overall patterns, but the magnitudes of the gradients differ
somewhat. MERRA-2, NLDAS, and ERA5-Land show
slightly higher values than the others in the southern tier of
states. All capture the irradiance minimum in the Pacific
Northwest to some extent, with PRISM and WorldClim ex-
hibiting deeper and more extensive minima than the others.
The intensity and southern extent of the “trough” of lower ir-
radiance in the Midwest varies from product to product;
MERRA-2, ERA5-Land, and Daymet show a relatively lim-
ited southern extent of this trough in comparison with PRISM
andWorldClim.

Differences in global irradiance among products are more
dramatic in summer (Fig. 7). The north–south gradient is
much reduced at this time of year, leaving Tc as the primary
controlling influence on patterns of global irradiance. PRISM

and WorldClim are the most similar overall, albeit with
PRISM showing greater spatial detail and a greater range of
values. Both show the western United States as exhibiting rel-
atively high irradiance values except for the Pacific Northwest
and southwestern mountains, and the eastern United States
as somewhat darker due to higher rainfall at this time of year.
ERA5-Land also shares this pattern, with less detail due to
limited spatial resolution. NLDAS shows a relatively bright
eastern United States, but the southwest mountains are highly
accentuated and have the lowest values in the CONUS.
MERRA-2 has extremely high irradiance loadings in the west-
ern United States, and the lowest values are focused on the
southeastern United States along the Gulf Coast. Daymet
shows even lower values in the southeast and extends low val-
ues across the entire eastern United States. Daymet also has
extremely high values over the higher terrain in the western
United States. The July spatial patterns of NLDAS and Day-
met (Figs. 7d,e) are qualitatively similar to summer (June–
August) patterns reported in Slater (2016), though Slater
(2016) used an earlier version of Daymet (the exact version
number was not given).

FIG. 9. Mean monthly GHI at stations (symbols) and from PRISM, WorldClim, and Daymet (solid and dashed
lines) along (a) transect 1 in July, (b) transect 2 in March, (c) transect 3 in July, and (d) transect 4 in July. Transect lo-
cations are shown in Figs. 8, 10, 11, and 12, respectively. Light-brown shading shows surface elevation. Station values
were adjusted for biases as described in section 3. Daymet values were converted from a sloped surface to a horizontal
surface using the ratio of the horizontal to sloped surface radiation from the PRISM normals at the same grid resolu-
tion. The conversion only had a very minor effect relative to the full range of Daymet values shown.
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b. Central California coast

PRISM clearly shows the effect of clouds and fog on global
irradiance in July around San Francisco Bay and Monterey
Bay and along the coastline (Fig. 8), an effect too spatially fine
to be reproduced by the coarser reanalysis products (Fig. 7).
WorldClim and Daymet show much weaker gradients than
PRISM in global irradiance from the coastline to higher inland
elevations above the marine layer (Fig. 9a). For example, over
a distance of about 10 km from the city of Monterey, Califor-
nia, to the nearby hills of the Santa Lucia Range to the south,
global irradiance increases from about 20 to 30 MJ m22 day21

in PRISM, but only from 24 to 25 MJ m22 day21 in World-
Clim and from 23 to 24 MJ m22 day21 in Daymet.

c. Southern Sierra Nevada

During the months of February to April, PRISM shows a
band of diminished global irradiance along the western foot-
hills of the southern Sierra Nevada Range, bounded by
higher radiation in the central Valley to the west and higher
radiation in the high Sierra Nevada and their leeward side
to the east (see Fig. 10 for March; February and April are
not shown). This darker band results presumably from
clouds that form along the windward slopes of the Sierra
Nevada. The band is absent from both WorldClim and Day-
met in March (Fig. 9b). WorldClim simply shows a generally
monotonic increase in global irradiance from the coast to
the east of the Sierra Nevada. Daymet shows a large

FIG. 10. As in Fig. 8, but for March and highlighting the effect of cloud cover along the western slopes of the Sierra
Nevada in southern California. Higher values of radiation from Daymet exceed the upper limit of the color scale. The
dark-gray line shows the location of transect 2 used in Fig. 9b. The mapped region corresponds to area “B” in Fig. 4.
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increase in solar radiation from the Central Valley to the
peaks of Sierra Nevada, with values at the highest elevations
approximately 20% higher than those in PRISM at the same lo-
cations. The darker band is evident in NLDAS and ERA5-Land
(not shown), albeit with lower granularity.

For this region, Lapo et al. (2017) concluded that
MTCLIM, the algorithm used in Daymet, provided the best of
four methods they examined for estimating global irradiance.
However, we find notable biases in Daymet (Figs. 9b and 10).
In all but winter months, Daymet overestimates global irra-
diance at high elevations but underestimates it in the
Central Valley. Our results are more consistent with Slater
(2016), although note that all three studies used a different

version of Daymet (or MTCLIM) and applied different QC
procedures.

d. Colorado Rockies

PRISM shows a strong gradient in global irradiance be-
tween the Rocky Mountains and the surrounding plateaus
and western Great Plains in Colorado during the mon-
soonal months of July and August (see Figs. 9c and 11 for
July). WorldClim shows a similar spatial pattern, although
with higher global irradiance values in the mountains
(∼23 MJ m22 day21) relative to PRISM (19–21 MJ m22 day21).
Daymet, curiously, shows an opposite pattern: very high global

FIG. 11. As in Fig. 8, but for July and highlighting the effect of monsoonal moisture over the Rocky Mountains of
central Colorado. The dark-gray line shows the location of transect 3 used in Fig. 9c. Higher values of radiation from
Daymet exceed the upper limit of the color scale. The mapped region corresponds to area “C” in Fig. 4.
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irradiance in the mountains (24–33 MJ m22 day21) and lower
global irradiance in the Great Plains. This opposite pattern is
consistent with the summer biases shown by Slater (2016).
NLDAS is similar to PRISM, albeit with slightly higher values
in general (Fig. 7).

e. North Carolina Appalachians

In the summer months, PRISM shows distinctly lower
global irradiance over the orographically favored areas of the
Appalachian Mountains in North Carolina than on the Pied-
mont to the southeast and to the Ridge and Valley region to
the northwest (see Figs. 9d and 12 for July). Within the moun-
tain range, there is also a clear contrast between the drier in-
terior valleys (higher radiation) and wetter mountains (lower
radiation). By October, the pattern has been replaced by one
with lower global irradiance north and west of the mountains
as the predominant wind direction becomes northwesterly
(not shown). The July pattern in global irradiance mimics the

pattern in RHmin (see Fig. S7 in the online supplemental
material) and is a consequence of the distinctly negative cor-
relation between Tc and RHmin in this region. As an example,
Fig. 13 shows mean July Tc against mean July RHmin for the
26 stations used to estimate Tc at 82.8738W and 35.4898N. The
coefficient of determination R2 of the linear regression is 0.59.
All 26 stations are less than 79 km from the interpolated loca-
tion. WorldClim shows a similar but muted spatial pattern,
with only about one-half of the range between the low and
high values of solar radiation relative to PRISM. Curiously,
this summer pattern is evident in both PRISM and World-
Clim, and even in the lower-resolution NLDAS and ERA5-
Land (not shown, but is visible for July in Fig. 7), but is largely
absent from Daymet.

f. Error analysis

The total error at a given location in the gridded data arises
from error in the station data and error from the interpolation

FIG. 12. As in Fig. 8, but for July and highlighting the orographic influence of the Appalachian Mountains of North
Carolina. The dark-gray line shows the location of transect 4 used in Fig. 9d. The black square marks the location of the
interpolated cell discussed in the text (see also Fig. 13, below). The mapped region corresponds to area “D” in Fig. 4.
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method. Errors contributed from the latter source can be esti-
mated using omit-one jackknife cross validation. Overall,
mean absolute interpolation error of mean monthly effective
cloud transmittance Tc is relatively small (2.4%); lower than
typical factory calibration errors of pyranometers. Errors vary
seasonally and are highest in midwinter (3.1%) and lowest in
summer (2.1%) (Table 2). Higher error in midwinter can be
expected given that relative errors in effective cloud transmit-
tance will tend to be higher when solar radiation is low.

The error contributed from observations can be estimated
by leaving out some high quality observations completely
from the mapping processes and comparing those data with
gridded data at the same locations. We compared PRISM
gridded GHI monthly normals with monthly means calculated
from 16 NREL stations not used in the mapping process. The
period of record for the NRELmeans ranged from 5 to 34 years
and spans 1985 through 2021. We applied the same QC proce-
dure to the NREL daily data as we did to the other daily obser-
vations to exclude questionable data. However, the NREL data
that passed QC were left unadjusted, the assumption being that
they were already very accurate.

We estimated error as the mean of the absolute value of
the percent difference in GHI between the gridded monthly
normals and the NREL station monthly means. We acknowl-
edge that errors at NREL station locations will not represent
the complete distribution of errors across CONUS. Given
that, PRISM errors ranged from as little as 1.9% to as high as

10.6% across stations, with a mean of 5.2% (Table 3).
Because means based on shorter records will include shorter-
term fluctuations, we also recalculated the mean error across
stations after increasing the minimum acceptable record
length progressively by one year. In general, mean error
decreased as record length increased and number of stations
decreased. At 14 years, eight stations remained, and the mean
error was 4.2%. Error varied by month (Table 4), with overall
higher error in winter (e.g., 8.5% in January) than in summer
(e.g., 3.7% in June).

PRISM had the least overall error (5.2%) among the six
gridded solar radiation datasets examined; mean errors for
the other datasets ranged from 5.8% (WorldClim) to 10.5%
(MERRA-2). Although the other datasets showed less error
for some stations and some months, PRISM had the least
error for a plurality of stations (Table 3) and a plurality of
months (Table 4).

g. Limitations and uncertainty

The quality of the gridded solar radiation data is ulti-
mately limited by the quality, length, and density of solar
observations over CONUS. As previously noted (e.g., Slater
2016), solar observations across the United States are fre-
quently degraded as a result of poor calibration, poor main-
tenance, and inappropriate site conditions. Our QC process
excluded approximately 25% of the observations we ini-
tially acquired, and of the daily values we retained, 88%
were adjusted by at least 1%. When estimating the long
term monthly means, our minimum allowable record length
(5 years) further excluded 22% of the stations that still had
some “valid” solar observations.

Uncertainty is undoubtedly large in areas of CONUS with
low coverage density (e.g., Maine, northeast Arizona and
northwest NewMexico, and western Montana). In some areas,
interpolation relied heavily on ASOS and NSRDB stations
where solar observations were relatively scarce (e.g., much of
the Midwest). ASOS and NSRDB stations have wide coverage
over CONUS, and ASOS stations tend to have long records,
but, as we showed, sizable biases can result from the algo-
rithms used to estimate GHI from cloud properties (ASOS) or
other environmental variables (NSRDB). Although errors in
daily estimates of global solar radiation using ASOS cloud
data can be large, we might expect long-term biases to be
much smaller, and Belcher and DeGaetano (2007) do report
relatively small mean seasonal biases ranging from 1.1% in
winter to 22.5% in summer with no apparent regional pat-
terns in bias. In contrast, we found distinct regional patterns of
bias across CONUS with mean monthly bias ranging from
about210% to 10%. Similar to NSRDB, Wilcox (2012) report

FIG. 13. Mean July effective cloud transmittance Tc against the
predictor variable mean July daily minimum relative humidity
RHmin for the 26 stations (black circles) used to estimate Tc at
82.8738W and 35.4898N, a valley location in the Appalachians of
North Carolina (see Fig. 12). The black line is the result of the
linear regression.

TABLE 2. CONUS-wide PRISM-interpolation cross-validation mean absolute error (%) for mean monthly effective cloud
transmittance Tc. Errors are reported as the average error over two months.

Statistic Dec–Jan Feb–Mar Apr–May Jun–Jul Aug–Sep Oct–Nov Avg

Mean Tc 0.65 0.68 0.72 0.77 0.77 0.71 0.72
Error (%) 3.1 2.7 2.1 2.1 2.1 2.3 2.4
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small mean monthly biases (from 20.07 to 1.73%), yet we
found distinct regional variability in mean monthly bias also
ranging from about 210% to 10%. Although we attempted to
estimate and reduce these ASOS and NSRDB biases across
CONUS, the actual biases were poorly known where reliable
nearby observations were scarce.

With station density increasing greatly from 1991 through
2020, most locations have less than 10 years of record and
include only the last decade of the analysis period. Though
steps were taken to reduce the deviations at these stations

from the long-term mean [section 3a(3)], the final climatolo-
gies are still weighted toward the later years.

Last, our estimation of cloud transmittance and the steps
taken to reduce errors from degraded instruments rely on
modeled clear-sky GHI with optical parameters derived from
MERRA-2. Mean absolute biases in modeled clear-sky GHI
of roughly one percent, if not more, should be expected
(Gueymard 2012; Sun et al. 2019) and although we have not
done so here, future work should quantify the biases in our
modeled clear-sky GHI against benchmark data.

TABLE 3. Station comparison of PRISM, WorldClim, Daymet, ERA5-Land, NLDAS, and MERRA-2 gridded 30-yr normals with
NREL observations: mean of the absolute value of the percent difference in GHI between the gridded monthly normals and the NREL
station monthly means. Values were extracted from the gridded normals at the stations’ coordinates using bilinear interpolation. Daymet
values were converted from a sloped surface to a horizontal surface using the ratio of the horizontal to sloped surface radiation from the
PRISM normals at the same grid resolution. The conversion only had a minor effect on the tabulated results. The first column gives the
average NREL station GHI for all months for reference. Boldface font indicates the dataset with the least error.

Station ID
NREL

(MJ m22 day21) PRISM (%) WorldClim (%) Daymet (%) ERA5-land (%) NLDAS (%) MERRA-2 (%)

BMSa 16.4 3.1 4.0 5.2 13.4 5.2 13.9
BSa 13.5 5.2 3.4 10.4 13.0 13.3 25.0
ECa 15.3 3.1 2.4 6.8 5.4 10.3 11.6
HSUa 13.9 2.0 5.6 5.6 17.6 24.7 17.8
IRRSPa 16.5 3.9 5.0 5.7 12.3 6.3 12.8
LMU 18.7 5.0 8.0 14.4 8.1 8.5 11.3
LRSS 17.5 7.1 6.4 5.5 5.9 4.1 7.9
NPC 20.4 8.3 5.5 18.5 3.0 4.3 3.6
NWTCa 16.0 1.9 3.8 3.2 16.2 5.2 16.5
SMUDA 18.0 4.3 7.6 11.8 3.9 3.9 4.4
SPMDa 17.1 5.6 9.0 7.8 14.0 4.5 11.7
STAC 17.8 10.6 8.1 8.8 3.2 6.1 5.3
UAT 21.0 5.0 8.0 17.7 1.8 3.3 2.6
UNLVa 20.4 8.6 4.4 18.2 2.6 4.6 3.2
UOSRML 14.4 7.1 7.5 6.5 5.5 8.9 4.9
VTIF 16.2 2.9 4.9 5.1 14.4 6.4 14.9
Mean 17.1 5.2 5.8 9.4 8.8 7.5 10.5
Meanb 16.2 4.2 4.7 7.9 11.8 9.3 14.1

a Station with at least 14 years of data per calendar month.
b Only stations with at least 14 years of data are used in the mean.

TABLE 4. Monthly comparison of PRISM, WorldClim, Daymet, ERA5-Land, NLDAS, and MERRA-2 gridded normals with
NREL observations: mean of the absolute value of the percent difference in GHI between gridded monthly normals and NREL
station monthly means. The first column gives the monthly average global solar radiation for all NREL stations for reference. See
Table 3 caption for additional details.

Month NREL (MJ m22 day21) PRISM (%) WorldClim (%) Daymet (%) ERA5-land (%) NLDAS (%) MERRA-2 (%)

Jan 9.2 8.4 9.3 10.1 8.5 8.7 6.4
Feb 12.5 7.7 9.2 9.9 9.3 7.6 6.3
Mar 17.0 5.4 6.8 7.1 8.4 7.0 7.1
Apr 21.0 4.8 5.7 7.4 9.0 4.7 9.1
May 23.3 4.0 5.4 9.7 9.6 9.1 12.2
Jun 25.5 3.7 2.9 7.1 7.8 6.1 12.4
Jul 23.9 4.1 5.3 7.6 11.4 9.1 13.6
Aug 21.8 4.8 4.2 8.4 9.9 8.9 12.5
Sep 18.4 3.9 3.1 8.9 8.8 7.1 14.0
Oct 14.0 3.5 3.5 11.6 8.0 7.0 14.1
Nov 10.2 5.4 8.5 14.6 6.3 6.1 9.3
Dec 8.1 6.9 6.3 10.8 8.2 8.3 8.4
Mean 17.1 5.2 5.8 9.4 8.8 7.5 10.4
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5. Conclusions

High-resolution (30 arc s) grids of long-term (1991–2020)
mean monthly global irradiance were developed for CONUS.
To meet multiple user needs, we calculated both irradiance
normal to a horizontal surface and to a sloped ground surface.
Recognizing that complementary datasets used to generate
solar irradiance could also aid researchers, we have also pro-
vided global clear-sky GHI and effective cloud transmittance
Tc in the PRISM solar radiation dataset.

To generate these datasets, we took advantage of the expo-
nential growth in solar radiation measurement locations
across CONUS over the last several decades (Fig. 1). Even
with the expanded networks of observations, there exist large
resources still untapped by our work, namely the radiation
or power output measured at photovoltaic systems. With
2.7 million residential photovoltaic systems installed as of
2020 (Feldman et al. 2021) and large growth expected over
the next few decades (U.S. Energy Information Office 2021),
there exists the potential for additional solar radiation meas-
urements, mostly in private hands, to be acquired at vastly
more locations than what is currently and publicly available
from existing networks. High-resolution atmospheric optical
properties derived from recently deployed satellites (e.g.,
Heidinger et al. 2020) also offer the potential to improve the
accuracy of spatial interpolation of surface station data.

The creation of a gridded monthly climatology of global ir-
radiance is a first step toward generating gridded monthly and
daily time series datasets at both 30 arc s and 1/248 (∼4 km)
resolutions to complement the larger PRISM suite of gridded
meteorological data. As with other meteorological variables,
the climatologies have the potential to serve as predictors in
the climatologically aided interpolation of the monthly and
daily values.
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S1. Estimating subdaily cloud transmittance from ASOS (METAR) 

 Following Belcher and DeGaetano (2007), total cloud transmittance at a given time of 

observation was calculated as the product of partial transmittance values for each cloud layer 

observed. Partial transmittance values depend on cloud base height and coverage (see Table S3). 

The total transmittance Tc,i at time indexed by i is calculated as  

𝑇𝑐,𝑖 = ∏ 𝑇𝑐,𝑖,𝑗 (1 − 𝛼𝑠𝛼𝑐)⁄

𝑛

𝑗=1

          (S1) 

where j indexes a cloud layer, n is the total number of layers, s is the surface albedo and c is 

the cloud albedo. Total transmittance was further reduced by additional factors when certain 

weather phenomena were observed (see Table S3). Like Belcher and DeGaetano (2007), we set 

s = 0.2 and did not adjust for presence of snow because we did not consistently have snow 

cover data at each location. Also like Belcher and DeGaetano (2007), when the lowest cloud 

base was below 3659 m, c = 0.5, else c = 0.  

Belcher and DeGaetano (2007) assumed ASOS data would contain up to three cloud 

layers and no cloud bases above 3659 m. However, since they first developed their algorithm, 

many ASOS stations with newer ceilometers began reporting more than three layers and report 

cloud bases above 3659 m. To use this additional information, we simply repeated the values for 

cloud layer 3 for cloud layers 4 and up. For cloud base heights above 3659, we simply used the 

partial transmittance values for 3049 – 3659 m range. Partial transmittance values produced by 

Belcher and DeGaetano (2004) for manual observations of cloud height and coverage suggest 

higher transmittance for cloud bases above 3659 than the values we used. Ideally, new partial 

transmittance tables would be generated for the newer ceilometers. In the meantime, however, 

we attempted to reduce systematic biases in ASOS total transmittance based on the existing 

partial transmittance values in Table S3 (see Section S3). 

Obtaining records on the precise instrument used at each ASOS station and when it was 

installed or discontinued was infeasible. Therefore, we relied on the data themselves to estimate 

the history of reporting methods and/or instrumentation. For each calendar year we calculated the 

fraction of days with recorded cloud heights > 3659 m during daylight hours. If the frequency of 

days in a year with cloud heights above 3659 m was less < 5%, we assumed the ceilometer used 

in that year could not detect clouds above 3840 m (“Type I” station), otherwise we assumed it 

could (“Type II” station). We did not attempt to determine when, within a year, a change in 

instrumentation or reporting methods was made. 

 We allowed stations to change type from year to year because we found cases where a 

station historically did not (Type I) and then did (Type II) frequently report cloud heights > 3659 

m, and cases where a station historically did (Type II) and then did not (Type I) frequently report 

cloud heights > 3659 m. The former cases suggest an upgrade in instrumentation. The latter 

cases could be explained by the discontinuation of frequent manual observations, but we did not 

attempt to determine how often a station used manual observations. 

 

S2. Quality control and bias reduction in global horizontal irradiance (GHI) measurements 
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First, range and completeness tests were applied to the hourly and daily GHI (Ssurf) in the 

following sequence: 

1) General hourly range check: Hourly Ssurf  outside the range -1.0 to 1,500 Wm-2 were 

flagged as invalid; hourly Ssurf between -1.0 and 0 Wm-2 were set to 0 and retained. An 

exception was made for the SURFRAD network, where hourly values between -6.0 and 0 

Wm-2 were set to 0 and retained.   

2) General daily completeness check: If fewer than 18 (out of 24) hourly Ssurf values were 

valid, the day was flagged as invalid.  

3) Daytime range and completeness check: If any hourly Ssurf = 0 or was missing or invalid 

between one hour after sunrise and one hour before sunset, the day was flagged as invalid 

4) Nighttime range and completeness check: If more than 20% of the hourly Ssurf ≠ 0 or 

were missing or invalid between one hour after sunset and one hour before sunrise 

(nighttime hours), the day was flagged as invalid 

5) General daily range check: Once hourly data were aggregated to daily totals, daily Ssurf  

outside the range 0 - 45 MJ m-2 were flagged as invalid 

Next, we used the following algorithm to adjust observed Ssurf and identify values that did 

not mean quality criteria after adjustment: 

1) Assign a modeled clear-sky GHI (Sclear_sky) to each day that has an observed Ssurf. For leap 

days, use the average of Sclear_sky on 28 February and 1 March. Set prior guess of CSR = 

1. 

First pass: 

2) Define a 183-day analysis window starting on day i (e.g., 1 January 1990 for i = 1) and do 

steps 3 through 8 within this window. (A range of window size was tested. 183 days 

struck a balance between over-correcting data but not missing brief periods (sub-annual) 

when the instrument was out of calibration or faulty). 

3) Calculate Tc = Ssurf / Sclear_sky for day in window. Exclude days with Tc ≥ 1.3 from the 

following calculations. 

4) Get the n = 5 highest values of Tc (Tc_n), calculate their mean (𝑇𝑐_𝑛
̅̅ ̅̅ ̅) and their anomalies 

(anom) as ratios with respect to their mean: 𝑇𝑐_𝑛_anom = 𝑇𝑐_𝑛/𝑇𝑐_𝑛
̅̅ ̅̅ ̅.  

5) Exclude low outliers (those with Tc_n_anom < 0.01) if they exist and recalculate  𝑇𝑐_𝑛_anom =

𝑇𝑐_𝑛/𝑇𝑐_𝑛
̅̅ ̅̅ ̅ for n < 5. 

6) Exclude high outliers (those with Tc_n_anom > 1.03) if they exist and recalculate  

𝑇𝑐_𝑛_anom = 𝑇𝑐_𝑛/𝑇𝑐_𝑛
̅̅ ̅̅ ̅ for n < 5. 

7) Let 𝑇𝑐_𝑛
̅̅ ̅̅ ̅ be the estimate of CSR (i.e., 𝐸clear_sky = 𝑇𝑐_𝑛

̅̅ ̅̅ ̅ 𝑆clear_sky). If n = 0, use prior guess 

of CSR (at iteration i – 1). 

8) Adjust all observations in window using Eq. (4) and replace Ssurf with 𝑆surf
∗  within the 

window. 

9) Advance window forward 1 day (i = i + 1) and repeat steps 2 through 8 until end of record 

reached. 
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Second pass: 

10) Repeat steps 2 through 9 but with a window that varies in size sinusoidally from 91 days 

in mid-winter to 183 days in mid-summer. (Narrower windows were used in winter to 

attempt to correct for situations where obstacles, such as trees, impeded direct radiation at 

low sun angles, which would have more impact on daily GHI in winter). 

Third pass: 

11) Calculate Tc for entire record using adjusted values of Ssurf. 

12) Flag days with Tc > 1.05 as bad. 

13) Find periods of 60 consecutive days with Tc < 0.75. Flag all 60 days as bad. 

14) Find periods of 90 consecutive days with Tc < 0.9. Flag all 90 days as bad. 

Fourth pass: 

15) Flag an entire calendar year as bad if more than 33% of days were previously flagged as 

bad. 

  

S3. Reducing bias in estimates of daily cloud transmittance from ASOS (METAR) 

As discussed in Section 3.a.2, we paired ASOS stations with proximal stations measuring 

GHI to estimate errors in the estimation of ASOS Tc using the method of Belcher and DeGaetano 

(2007) with our minor modifications. For brevity we refer to non-ASOS stations with GHI 

measurements as “solar” stations. Restricting to solar stations within 20 km of an ASOS station, 

excluding SNOTEL stations because of the generally low quality of SNOTEL solar data and 

poor siting within forested locations, and requiring concurrent records of at least 730 days, 

resulted in 2562 pairs. There were many cases of an ASOS station paired with multiple solar 

stations, which allowed us to see when patterns were, or were not, consistent among solar 

stations. 

Next, we generated a filtered set of station pairs that include no more than one station 

pair per ASOS station. When filtering, we first excluded pairs that met the following criteria: 

1) Pairs with elevation differences > 300 m; 

2) Pairs where one station’s elevation was ≤ 25 m but the other station’s elevation was > 40 

m, because of complications from coastal fog; 

3) Pairs where the root mean squared difference (RMSD) of daily Tc between stations was > 

0.2. 

When there were still multiple pairings for an ASOS station, selection was based on proximity, 

length of concurrent records, and whether the solar station was in the Remote Automatic 

Weather Station (RAWS) network, which tend to be of poorer quality. To get a dimensionless 

score for each pairing with a given ASOS station, the distance between stations and the number 

of concurrent records were first divided by the maximum value of each metric, respectively, of 

all the pairings for that ASOS station. A score was then assigned to each pair that was a sum of 
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the unitless concurrent record length and the inverse of the dimensionless distance. The score of 

each pair that included a RAWS station was then divided by 2. Selecting the pair with the highest 

score for each ASOS station resulted in 971 pairs. 

We checked which ASOS stations regularly reported cloud base heights above 3659 m. 

“Regularly reported” meant that a station reported clouds above 3659 m on at least 5% of days 

within a calendar year. Whether a station was classified as not regularly reporting clouds > 3659 

m (“Type I”) or as regularly reporting clouds > 3659 m (“Type II”) could change from one 

calendar year to the next, but not within a calendar year. 

For each of the 2562 station pairs, we calculated the mean of the difference (MD) of 

ASOS Tc minus solar station Tc distinctly within 0.05-wide bins of solar station Tc. (Note that this 

is different from what is described in the main text for determining the bias adjustment, where 

we calculated the mean of the difference of solar station Tc minus ASOS Tc as function of ASOS 

Tc.) MD was also calculated distinctly for three cases: 1) no clouds above 3659 m reported and 

the station was Type I, 2) no clouds above 3659 m reported and the station was Type II, and 3) 

clouds above 3659 m reported at either station Type I or II. Finally, the mean of MD over all 

stations was calculated, giving each station equal weight.  

We found that the bias (MD) was dependent on observed Tc and most so when clouds 

above 3659 m were reported (Fig. S3). Bias tended to be positive for Type I stations when they 

did not report clouds > 3659 meters (case 1). Positive biases for all three cases were highest at 

low values of observed Tc and this occurred because the Belcher and DeGaetano method very 

rarely resulted in ASOS Tc < 0.15 though such low values of Tc were often observed.  

We repeated the analysis for the subset of 971 station pairs. This reduced the range of 

MD across stations, but had negligible impact of the mean result across stations. We also 

calculated MD separately for each calendar month, but did not detect sufficient intra-annual 

variability in MD to justify stratifying our bias analysis by month (results not shown). 

We reduced systematic biases in ASOS Tc through bias correction functions that were a 

function of ASOS Tc itself. Bias correction functions were applied daily to each of 3 distinct 

cases: 1) no clouds above 3659 m reported and the station was Type I, 2) no clouds above 3659 

m reported and the station was Type II, and 3) clouds above 3659 m reported at either station 

Type I or II. 

For each station pair, we calculated the mean of the difference (MD) of solar station Tc 

minus ASOS Tc distinctly within 0.05-wide bins of ASOS Tc. MD was also calculated distinctly 

depending on how the days were classified (Type I, Type II, with or without clouds > 3659 m). 

The mean of MD over all stations was then calculated, giving each station equal weight. Third-

order polynomials were fitted to mean MD versus bin-averaged ASOS Tc to parameterize the 

adjustment we applied to daily ASOS Tc (Fig. S4). We applied the bias corrections uniformly 

CONUS-wide. Though we saw some indication of variability in bias by region, we did not at this 

stage parameterize regional variability in the bias correction. Seasonal variability appeared 

relatively small so we applied the same equation year-round. Table S4 shows the reduction in 

mean bias, mean absolute error, and root mean square error of daily ASOS Tc after bias-

correction. 
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S4. Removing short-term deviations from the long-term mean for stations with shorter 

records 

 This section describes the procedure of removing “short-term” deviations in mean 

transmittance Tc from the long-term (1991-2020) mean for stations with records shorter than 23 

years. 

The short-term (< 23 years), or “target,” station means were adjusted to 1991-2020 using 

nearby long-term (≥ 23 years) “anchor” stations. Anchor stations were chosen based on 

proximity to the target station along with the number of years of data they both had in common 

for a given month. First, anchor stations were ranked by distance from the target station using 

normalized inverse distance weighting. Next, anchor stations were ranked by the percentage of 

years of data they had in common with the target station during 1991-2020. Finally, anchor 

stations were ranked by the percentage of years they had in common with the target station 

outside 1991-2020. Anchor stations with more years in common within 1991-2020 were ranked 

higher than those with years outside 1991-2020. The desired number of years in common was 

capped at 23 since that is the number of years considered sufficient to represent 1991-2020. The 

final ordering of anchor stations was based on a combined score of the three separate rankings 

with proximity weighted highest, then percent of years within 1991-2020, and lastly the percent 

of years outside 1991-2020. 

After selecting an anchor station, monthly means for the target and anchor stations were 

calculated using their respective data from the set of common years. We allowed this set of 

common years to extend outside the period 1991-2020 if data were available. An adjustment 

factor was then calculated by dividing the anchor station 1991-2020 mean by the anchor station 

extended mean. The target station extended mean was multiplied by this factor to determine the 

target station adjusted mean for 1991-2020. Arithmetically, the target adjusted mean (𝑋𝑡
̅̅ ̅′

) was 

calculated as follows: 

(𝑋𝑡
̅̅ ̅′

) = 𝑋𝑡𝑐
̅̅ ̅̅ (𝑋𝑎

̅̅̅̅ 𝑋𝑎𝑐
̅̅ ̅̅̅⁄ )          (S2) 

where 𝑋𝑎
̅̅̅̅  is the anchor 1991-2020 mean, 𝑋𝑎𝑐

̅̅ ̅̅̅ is the common-period anchor mean, and 𝑋𝑡𝑐
̅̅ ̅̅  is the 

common-period target mean (in our case X represents Tc). 𝑋𝑡
̅̅ ̅′

 was calculated for each target 

station using the three anchor stations with the highest scores. These three adjusted means were 

then averaged to obtain the final 1991-2020 mean for the target station. The choice of using three 

anchor stations is described in Appendix A of Daly et al. (2008).  

 The final 1991-2020 monthly average values were tested again for spatial consistency 

using the ASSAY QC system, flagging those that failed as invalid. Finally, 1991-2020 monthly 

mean GHI values were calculated by multiplying the 1991-2020 average Tc values by the 

monthly mean clear-sky GHI values. 
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S5. Mapping regionally consistent biases in estimates of mean monthly cloud transmittance 

from ASOS and NSRDB stations 

As discussed in Section 3.b.2, we mapped regionally consistent biases in mean monthly 

cloud transmittance Tc modeled at ASOS and NSRDB stations and then used the maps to adjust 

the ASOS and NSRDB values. 

Biases were estimated by subtracting the estimate of the “true” mean monthly Tc from the 

mean monthly Tc modeled at each ASOS and NSRDB station. The “true” value was taken as the 

average Tc from all stations with valid observations of mean monthly Tc within a 20 km radius of 

each ASOS or NSRDB station. Biases were not estimated for ASOS or NSRDB stations with no 

measured values within 20 km distance. 

Mean monthly biases were mapped separately from ASOS and NSRDB stations using 

CAI as described in Section 3.b.2, except that mean monthly daily minimum relative humidity 

(RHmin) was not used as the predictor. RHmin generally provided little explanatory power, so the 

interpolation was dominated by inverse distance weighting, while smoothing parameters were 

chosen to avoid very fine-scale variability. As examples, Fig. S8 shows bias maps for two 

months for ASOS and NSRDB. 
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Table S1.  Meteorological monitoring networks and number of stations used to generate 

gridded 1991-2020 mean monthly global irradiance. 

 Code Provider 

No. of 

stations Name 

1 AGRIMET AGRIMET 158 
U.S. Bureau of Reclamation Cooperative 

Agricultural Weather Network 

2 AGWXNET AGWXNET 175 AgWeatherNet 

3 AIRNOW MESOWEST 136 EPA AirNow 

4 AMOS COOP 2 
National Weather Service Cooperative 

Observer Program 

5 
APRSWXNET 

CWOP 
MESOWEST 1601 Citizen Weather Observers Program 

6 ARLFRD MESOWEST 35 
NOAA Air Resources Laboratory/Field 

Research Division 

7 ARLSORD MESOWEST 22 
NOAA Air Resources Laboratory/Special 

Operations And Research Division 

8 ASOS ASOS 2266 
Automated Surface/Weather Observation 

System  

9 AZMET MESOWEST 29 
University of Arizona Meteorological 

Network 

10 CEMP MESOWEST 27 
DOE/DRI Community Environmental 

Monitoring Program 

11 CIMIS CIMIS 215 
California Irrigation Management Information 

System 

12 COAGMET COAGMET 92 
Colorado Agricultural Meteorological 

Network 

13 DEOS DEOS 92 Delaware Environmental Observing System 

14 DRI MESOWEST 97 Desert Research Institute 

15 FAWN FAWN 44 Florida Automated Weather Network 

16 FGNET MESOWEST 23 
Utah Fruit Grower's Weather Monitoring 

Network 

17 HADS MESOWEST 96 
NOAA Hydrometeorological Automated Data 

System 

18 HJA HJA 4 H. J. Andrews Experimental Forest 

19 KSTATE KSTATE 79 Kansas Mesonet 

20 KYMESONET KYMESONET 71 Kentucky Mesonet 

21 MAWN MESOWEST 77 Enviroweather 

22 NCECONET NCECONET 40 North Carolina ECONet 

23 NDAWN HPRCC 167 North Dakota Automated Weather Network 

24 NEMESO HPRCC 58 Nebraska Mesonet 

25 NEVCAN NEVCAN 9 
Nevada Climate-ecohydrological Assessment 

Network 

26 NJWXNET NJWXNET 46 New Jersey Climate and Weather Network 

27 NMAQ MESOWEST 17 New Mexico Environment Department 

28 NMCC MESOWEST 10 New Mexico Climate Center 

29 NSRDB NSRDB 1306 National Solar Radiation Database 
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30 NWT LTER 3 Niwot Ridge LTER 

31 OKMESONET OKMESONET 142 Oklahoma Mesonet 

32 RAWS RAWS 1368 Remote Automatic Weather Stations 

33 SCAN SNOTEL 192 Soil Climate Analysis Network 

34 SD_MESONET SD_MESONET 37 South Dakota Mesonet 

35 SEV LTER 10 Sevilleta LTER 

36 SNTL SNOTEL 34 Snowpack Telemetry 

37 SRP MESOWEST 29 Salt River Project 

38 SURFRAD SURFRAD 7 Surface Radiation Budget Network 

39 TWDB MESOWEST 11 Texas Water Development Board 

40 UCC-AGNET MESOWEST 41 
Utah State University Agricultural Weather 

Network 

41 UGA UGA 81 University of Georgia Weather Network 

42 UOREGON UOREGON 31 
University of Oregon Solar Radiation 

Monitoring Laboratory 

43 USA USA 27 South Alabama Mesonet 

44 USCRN USCRN 117 U.S. Climate Reference Network 

45 
UTAHCLIMATE 

CENTER 
MESOWEST 42 Utah Climate Center 

46 UUNET MESOWEST 21 University of Utah MesoWest Group 

47 VCAPCD MESOWEST 6 Ventura County Air Pollution Control District 

48 VTWAC MESOWEST 17 Vermont Weather Analytics Center 

49 WACNET MESOWEST 7 Wyoming Agricultural Climate Network 

50 WTEXAS MESOWEST 95 West Texas Mesonet 

  Total 9312  

  Solar obs only1 5740  
1Excludes ASOS and NSRDB 
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Table S2. Website URLs for solar radiation data. 
Code URL Name1 

AGRIMET https://www.usbr.gov/gp/agrimet 

https://www.usbr.gov/pn/agrimet 

 

U.S. Bureau of Reclamation 

Cooperative Agricultural Weather 

Network 

AGWXNET https://weather.wsu.edu AgWeatherNet 

CIMIS https://cimis.water.ca.gov  California Irrigation Management 

Information System 

COAGMET http://www.coagmet.colostate.edu Colorado Agricultural Meteorological 

Network 

COOP https://www.weather.gov/coop National Weather Service Cooperative 

Observer Program 

DEOS http://www.deos.udel.edu Delaware Environmental Observing 

System 

FAWN https://fawn.ifas.ufl.edu Florida Automated Weather Network 

HJA https://andrewsforest.oregonstate.edu H. J. Andrews Experimental Forest 

HPRCC1 https://hprcc.unl.edu High Plains Regional Climate Network 

KSTATE http://mesonet.k-state.edu   Kansas Mesonet 

KYMESONET http://www.kymesonet.org  Kentucky Mesonet 

LTER1 https://lternet.edu  Long-Term Ecological Research 

Network 

MADIS1 https://madis.noaa.gov  NOAA Meteorological Assimilation 

Data Ingest System 

MESOWEST1 https://mesowest.utah.edu  University of Utah MesoWest 

NCECONET https://climate.ncsu.edu  North Carolina ECONet 

NDAWN https://ndawn.ndsu.nodak.edu  North Dakota Agricultural Weather 

Network 

NEVCAN https://nevcan.dri.edu  Nevada Climate-ecohydrological 

Assessment Network 

NJWXNET https://www.njweather.org  New Jersey Climate and Weather 

Network 

NREL2 https://midcdmz.nrel.gov/ National Renewable Energy Laboratory 

OKMESONET https://www.mesonet.org  Oklahoma Mesonet 

RAWS https://raws.nifc.gov  Remote Automatic Weather Stations 

SCAN https://www.wcc.nrcs.usda.gov/scan  Soil Climate Analysis Network 

SD_MESONET https://climate.sdstate.edu  South Dakota Mesonet 

SNOTEL https://www.wcc.nrcs.usda.gov/snow  Snowpack Telemetry 

SURFRAD https://gml.noaa.gov/grad/surfrad  Surface Radiation Budget Network 

UGA http://www.weather.uga.edu  University of Georgia Weather Network 

UOREGON http://solardat.uoregon.edu  University of Oregon Solar Radiation 

Monitoring Laboratory 

USA (aka CHILI) http://chiliweb.southalabama.edu  South Alabama Mesonet 

USCRN https://www.ncdc.noaa.gov/crn  U.S. Climate Reference Network 
1See Table 1 for all networks accessed via this source. 2NREL data were not used in the making of the gridded 

datasets. 

 

  

https://www.usbr.gov/gp/agrimet
https://www.usbr.gov/pn/agrimet
https://weather.wsu.edu/
https://cimis.water.ca.gov/
http://www.coagmet.colostate.edu/
https://www.weather.gov/coop
http://www.deos.udel.edu/
https://fawn.ifas.ufl.edu/
https://andrewsforest.oregonstate.edu/
https://hprcc.unl.edu/
http://mesonet.k-state.edu/
http://www.kymesonet.org/
https://lternet.edu/
https://madis.noaa.gov/
https://mesowest.utah.edu/
https://climate.ncsu.edu/
https://ndawn.ndsu.nodak.edu/
https://nevcan.dri.edu/
https://www.njweather.org/
https://midcdmz.nrel.gov/
https://www.mesonet.org/
https://raws.nifc.gov/
https://www.wcc.nrcs.usda.gov/scan
https://climate.sdstate.edu/
https://www.wcc.nrcs.usda.gov/snow
https://gml.noaa.gov/grad/surfrad
http://www.weather.uga.edu/
http://solardat.uoregon.edu/
http://chiliweb.southalabama.edu/
https://www.ncdc.noaa.gov/crn
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Table S3. Partial transmittance Ti(n) by cloud base height and coverage1. Adapted from 

Belcher and DeGaetano (2007). 
Height (m) FEW SCT BKN OVC 

Layer 1     

0 – 610  0.79 0.73 0.64 0.30 

610 – 1220 0.85 0.81 0.70 0.37 

1220 – 1830  0.86 0.82 0.69 0.40 

1830 – 2440  0.85 0.78 0.64 0.45 

2440 – 3049  0.84 0.73 0.59 0.48 

> 3049 0.77 0.68 0.57 0.53 

Layer 2     

0 – 610  0.83 0.76 0.80 0.42 

610 – 1220 0.87 0.90 0.84 0.50 

1220 – 1830  0.87 0.90 0.81 0.54 

1830 – 2440  0.84 0.86 0.75 0.56 

2440 – 3049  0.87 0.87 0.74 0.59 

> 3049 0.89 0.88 0.71 0.58 

Layer 3     

0 – 610  0.92 0.92 0.67 0.49 

610 – 1220 0.92 0.92 0.84 0.55 

1220 – 1830  0.88 0.90 0.81 0.58 

1830 – 2440  0.90 0.90 0.78 0.61 

2440 – 3049  0.88 0.88 0.77 0.60 

> 3049 0.87 0.87 0.74 0.60 

Layer 4 and up     

Use values for Layer 3    

Additional weather     

Obscured 0.27    

Fog 0.86    

Haze 0.91    

Visibility < 16.1 km 0.95    
1FEW = few, SCT = scattered, BKN = broken, OVC = overcast 
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Table S4. Mean over 971 stations of the station mean difference (MD), station mean absolute 

difference (MAD), and station root mean squared difference (RMSD) between effective daily 

cloud transmittance Tc estimated at ASOS and Tc calculated from nearby GHI measurements 

before and after bias correction (BC) of ASOS Tc. 
 Mean MD Mean MAD Mean RMSD 

Before ASOS BC 0.028 0.118 0.160 

After ASOS BC -0.002 0.104 0.135 
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Fig. S1. Expanded workflow diagram for data processing and mapping of global irradiance, Parts 

1 and 2. 
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Fig. S2. Expanded workflow diagram for data processing and mapping of global irradiance, Parts 

3 and 4. 
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Fig. S3. Station bias in estimated ASOS cloud transmittance Tc as a function of observed Tc on 

(a) days when no clouds above 3659 m were reported during daylight hours and the station did 

not regularly report clouds above 3659 m (Type I station), (b) on days when no clouds above 

3659 m were reported during daylight hours and the station did regularly report clouds above 

3659 m (Type II station), (c) and on days when clouds above 3659 m were reported during 

daylight hours. Bias estimates were based on comparison of ASOS Tc with Tc calculated from 

nearby stations with GHI observations (i.e., solar stations). Filled gray circles show ASOS Tc 

minus solar station Tc against solar station Tc averaged in 0.05-wide bins of solar station Tc at 

each of 2,868 station pairs. Filled colored circles show the means of all 2,868 station means. Left 

and right diagonal lines show lower and upper bounds, respectively, of possible values. 
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Fig. S4. Additive adjustment to initial estimate of ASOS cloud transmittance Tc as a function of 

the initial estimate of ASOS Tc (colored lines) on days when no clouds above 3659 m were 

reported during daylight hours and the station did not regularly report clouds above 3659 m 

(Type I station; orange), on days when no clouds above 3659 m were reported during daylight 

hours and the station did regularly report clouds above 3659 m (Type II station; green), and on 

days when clouds above 3659 m were reported during daylight hours (blue). Adjustment was 

based on comparison of ASOS Tc with Tc calculated from nearby stations with GHI observations 

(i.e., solar stations). Filled circles show solar station Tc minus ASOS Tc against ASOS Tc 

averaged in 0.05-wide bins of ASOS Tc and averaged over 971 station pairs. 
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Fig. S5. (a-m) Effective daily clear-sky transmittance Tclear_sky on the 15th day of the month 

simulated with IPW as a function of prescribed clear-sky vertical optical depth clear_sky on the 

MERRA-2 grid at 49° N, 114° W (near Glacier National Park, Montana) and 25.5° N, 81° W 

(near Everglades National Park, Florida). The fitted line is Eq. (5).  
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Fig. S6. Coefficients (a, c) b1 and (c, d) b2 from Eq. 5 fitted to IPW results (solid line) as a 

function of day of year for the MERRA-2 grid cells at (a, b) 49° N, 114° W (near Glacier 

National Park, Montana) and (c, d)  25.5° N, 81° W (near Everglades National Park, Florida). 

The dashed line shows an 8th-order polynomial fit for each coefficient as a function of day the 

year. 
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Fig. S7. Mean (a) January and (b) July daily minimum relative humidity RHmin (%) from 

PRISM. 
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Fig. S8. Spatially interpolated mean (a, c) January and (b, d) July effective cloud transmittance 

Tc bias in (a, b) ASOS and (c, d) NSRDB point estimates. 
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Fig. S9. Modeled mean (a) January and (b) July clear-sky GHI. 
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